
Dancing Swarm of Robots
FINAL REPORT

TEAM 40
CLIENT: DR. AKHILESH TYAGI

ADVISORS: DR. AKHILESH TYAGI, DR. DIANE ROVER, DR. PHILLIP JONES

MEMBERS: ABDALLA ABDELRAHMAN, DANIEL NIKOLIC, BENJAMIN SCHNEIDER,
NOAH THOMPSON, MASON WALLS, COLE WEITZEL

SDMAY21-40@IASTATE.EDU

HTTPS://SDMAY21-40.SD.ECE.IASTATE.EDU/
REVISED: 4/25/2021

Executive Summary

Development Standards & Practices Used
Software development is conducted under clean, consistent practices with

thorough documentation. Version control is managed by use of Github. This

project follows an adapted Agile development structure with the basic plan,

develop, test, deliver, and assess steps. Progress organization will be handled via

Git issues. The use of the IEEE 291992-2-2013 standard, which highlights

Software Testing, was utilized within the development of our project. This was

especially utilized since this standard supports functional and nonfunctional

testing as well as manual and automated testing. Another standard that was

utilized during the development of our project was the IEEE 14764-2006

standards, which defines the Software Life Cycle Processes, specifically

Maintenance.

Summary of Requirements

● Functional Requirements

○ The robot swarm should model the triangular pattern of bird flocks

in a 2-D space.

○ The swarm will be made up of two follower robots following a single

leader.

○ Only the lead robot may receive movement directions from a base

computer station. There may be no communication between swarm

members.

○ Both followers must determine their movements from sensor data

alone.

○ Followers must maintain 60 cm of separation and a 30° relative

angle from the leader.

○ Followers must maintain their position with a 10% maximum error

tolerance.

○ The swarm should be able to operate in a closed, controlled

environment with enough empty, level floor space for all members

to complete their movements unobstructed.

○ Due to COVID restrictions, no lab spaces are available so all project

components must be fully simulated in a virtual environment.

○ The total cost of the project should stay within the $500-$750

allotted budget.

○ Approximately 250 to 450 person hours will be required for project

completion.

○ (Optional) The swarm should be able to dance to the beat of a song

as directed by the leader.

● Non-Functional Requirements

○ The designed swarm system should be robust enough to hold the

triangular shape during complicated maneuvers (dances).

○ The leader robot should not have unreasonable restrictions on how

it should move.

○ The swarm should be able to withstand various numbers of follower

robots while maintaining the same follower functionality.

○ The swarm should be able to dance to different types of songs.

Applicable Courses from Iowa State University Curriculum
Many of the classes that we have taken at ISU will be beneficial in completing our

project. The first major course is computer engineering 288. Since everyone in

our group is a computer engineering major, we have all taken this class. This

class gave us the technical experience with the iRobot Create robots that we will

be using in our project. It also gave us insight into embedded systems and how to

efficiently integrate our software into the existing hardware. The second

applicable course that we all have taken is Computer Science 311. This class is

important because it taught us about efficient algorithm design. It also taught us

how to use different data structures and how to effectively implement them into

an algorithm. The combination of these two classes will help us succeed in

completing our project.

New Skills/Knowledge acquired that was not taught in courses
Use of the WeBots software suite was a completely new topic for this project.

Since this tool has not been taught in any of our courses, every group member

came into this project with no prior experience. Additionally, managing a project

as large as this with no in-person interaction was an entirely new concept. With

the arrival of the COVID-19 pandemic last March, the first semester of this

project was the first semester with fully-online course delivery for Senior Design.

Table of Contents
1 Introduction 7

1.1 Acknowledgement 7

1.2 Problem and Project Statement 7

1.3 Operational Environment 7

1.4 Requirements 8

1.5 Intended Users and Uses 8

1.6 Assumptions and Limitations 9

1.7 Expected End Product and Deliverables 9

Project Plan 10

2.1 Task Decomposition 10

2.2 Project Timeline/Schedule 12

2.3 Other Resource Requirements 12

2.4 Financial Requirements 12

3 Design Implementation 13

3.1 Previous Work And Literature 13

3.2 Design Thinking 13

3.3 Proposed Design 13

3.4 Implementation 14

3.5 Technology Considerations 17

3.6 Design Analysis 18

3.7 Development Process 18

3.8 Project Evolution 18

4 Testing 21

4.1 Unit Testing 21

4.2 System Testing 21

4.3 Acceptance Testing 22

4.4 Results 22

5 Closing Material 23

5.1 Conclusion 23

5.2 References 24

Appendices 25

Appendix I Operation Manual 25

Step 1. Setup 25

Step 2. Opening Project 25

Step 3. Compiling Controllers 26

Step 4. Running Simulation 27

Step 5. Controlling Swarm 27

Appendix II Alternative Versions 29

Hardware Implementation 29

360° LiDAR 29

Single-Decision Sweep 29

Multi-Sensor 29

Appendix III Other Considerations 30

Music Parsing 30

Dance Movements 30

Appendix IV Code 31

Leader Controller Code 31

Left Follower Controller Code 35

Right Follower Controller Code 39

Music Parser Code 43

List of Figures/Tables/Symbols/Definitions

Figure 1 - Subtask Dependency Graph 11

Figure 2 - Project Timeline 12

Figure 3 - Proposed Design Diagram 14

Figure 4 - WeBots Robot Node Class Diagram 15

Figure 5 - WeBots Simulation Screenshot 15

Figure 6 - Follower Algorithm Flowchart 16

Figure 7 - Note-Movement Conversion 17

Figure 8 - Collapsed Two-Tier Swarm 19

Figure 9 - Recovered Two-Tier Swarm 20

Figure 10 - Collapsed Formation After Repeated Illegal Movements 22

1 Introduction

1.1 ACKNOWLEDGEMENT

We would like to thank our advisors Dr. Akhilesh Tyagi, Dr. Diane Rover, and Dr. Phillip Jones, as
well as Lee Harker for their assistance and guidance throughout this project. Additionally, we would
like to thank the Department of Electrical and Computer Engineering for providing funding for this
project.

1.2 PROBLEM AND PROJECT STATEMENT

General Problem Statement

Bird swarms are thought to move with a single leader that determines the direction of the flock. All
other members simply maintain a certain local position relative to their neighbors. This presents
several advantages including increased aerodynamic efficiency, increased scalability for large
groups, and simplified navigation for the group. Other animal species such as fish and lobsters have
been observed exhibiting similar behavior. This movement heuristic has several applications in the
field of robotics including transportation, search-and-rescue operations, and space operations. The
purpose of this project is to model the movement behavior of these swarms in two dimensions on
the ground with a set of three robots.

General Solution Approach

This project models a triangular bird swarm with a single leader robot and two followers. Only the
lead robot receives instructions for movement while both followers have to compute their own
movements without any communication between members of the swarm. The followers determine
their movements from sensor data alone, maintaining a certain distance between themselves and
the other two swarm members.

To determine their local movements, followers will perform several distance readings over a scan
frame of 120°. The followers will scan through this frame until they detect a reflector mounted to
the center of the leader’s chassis. Once detected, the followers will lock onto this reflector, scanning
left and right across it in a limited window. As the followers maneuver, this scanning window is free
to rotate within the 120° frame.

Once the leader is found, the follower will then make corrections to its left and right wheel speeds
to steer in the appropriate direction needed to maintain local positioning with the leader. By doing
so, this project will produce a swarm system consisting of three physical robots that can perform
coordinated swarm maneuvers within a controlled operating arena without any direct
communication between participants.

Though this project originally sought to produce this system in a hardware implementation with
three physical robots moving together, this was not possible due to COVID-19 lab restrictions.
Instead, this project is entirely virtual in a simulated environment.

1.3 OPERATIONAL ENVIRONMENT

The robot swarm will operate in a simulation of an indoor space with enough empty floor space for
the lead robot to execute its maneuvers and for the followers to properly follow the leader. There

should be no physical obstructions within the operating area. The floor of the operating area should
be flat and level with an even terrain. Excessive infrared interference such as motion detectors
should be removed if possible.

1.4 REQUIREMENTS

● Functional Requirements
○ The robot swarm should model the triangular pattern of bird flocks.
○ The swarm will be made up of two follower robots following a single leader.
○ Only the lead robot may receive movement directions from a base computer

station. There may be no communication between swarm members.
○ Both followers must determine their movements from sensor data alone.
○ Both followers must maintain a certain separation distance between the other two

members within an approximate 10% tolerance.
○ The swarm should be able to operate in a closed, controlled environment with

enough empty, level floor space for all members to complete their movements
unobstructed.

○ Due to COVID restrictions, no lab spaces are available so all project components
must be fully simulated in a virtual environment.

○ The total cost of the project should stay within the $500 allotted budget.
○ Approximately 250 to 450 person-hours will be required for project completion.
○ (Optional) The swarm should be able to dance to the beat of a song as directed by

the leader.
● Non-Functional Requirements

○ The designed swarm system should be robust enough to hold the triangular shape
during complicated maneuvers (dances).

○ The leader robot should not have unreasonable restrictions on how it should move.
○ The swarm should be able to withstand various numbers of follower robots while

maintaining the same follower functionality.
○ The swarm should be able to dance to different types of songs.

1.5 INTENDED USERS AND USES

The intended users of our final product are Iowa State University’s Cpr E 288 professors. The
intended use for this product is to help model and understand swarm robotic behavior and may be
used to consider a redesign of the Cpr E 288 course. The results of this project would be
incorporated into the course’s lab in some capacity, either as a demonstration or student lab project.
With the generalized algorithm that this project has proven, it can be more easily reproduced in a
similar controlled environment such as the CprE 288 lab.

Considerable research has been done in the field of swarm robotics and its possible applications
[1][2]. By modelling the group movement behaviors observed in birds, insects, fish, and even
humans, groups of robots can coordinate together to perform complex coordinated tasks. Tasks
done as a swarm tend to be much more efficient, scalable, and fault-tolerant than when done with a
coordinating body governing the actions of individuals. Rather than being concerned with the
group’s movement as a whole, individual swarm members only have to maintain their local actions
relative to those of their neighbors. Similar to these applications, this project demonstrates group
movement by individuals maintaining a local position.

1.6 ASSUMPTIONS AND LIMITATIONS

Assumptions
● The swarm will operate without any external EM interference.
● The operating arena will be free of physical obstructions that may impede the swarm.
● The swarm movement will be started with all robots already in formation and fully charged.
● The swarm will consist of three robots.
● All robots that need to be detected by other robots will have adequate reflective material to

be properly sensed.
Limitations

● Like a bird swarm, the leader cannot stop instantaneously, turn tightly toward one follower,
or turn in place.

● No external IR light sources may be present in the operating arena.
● The project will be conducted fully virtually in a simulated environment with no physical

implementation due to COVID-19 lab restrictions.

1.7 EXPECTED END PRODUCT AND DELIVERABLES

Simulated System
As this project is fully virtual, the deliverable system is a WeBots simulation project fileset with
three fully-modelled robot models and a correctly-configured simulation engine. Each robot has its
own independent controller executed synchronously with the simulation’s physics engine. The two
follower robots must correctly implement our follower algorithm and should meet all performance
requirements.

Follower Robot
The design for the follower robot consists of an iRobot Create robot base augmented with the added
hardware from CprE 288’s CyBot. This includes the acrylic baseplate, servo assembly, and sensor
head mount. All components must be modelled to the specification of the CyBot and must be
verified to function correctly. In addition to these components, a central reflector cylinder was
added to allow for a scalable swarm with followers following other followers. Lastly, a controller for
each follower must be written implementing our movement algorithm.

Lead Robot
The design for the lead robot consists of a modified follower robot with the servo and distance
sensor disabled. The lead robot’s controller must take input either from the user’s keyboard through
the simulation software. This robot will direct the swarm in its movement.

These product models were delivered April 22, 2021.

2 Project Plan

2.1 TASK DECOMPOSITION

1. Planning
a. Platform Evaluation - A motion platform was chosen to serve as the motion base and main

logical hub for each of the three robots. The iRobot Create platforms from CprE 288 were
used for this purpose.

b. Sensor Evaluation - A shortlist of sensor setups for the two follower robots was compiled
for later testing. This sensor setup is the follower’s only communication with the outside
world.

2. Simulated Design Testing - The entire design was first prototyped in a simulated environment
with the WeBots software suite.
a. Algorithm Design - A generalized algorithm heuristic was devised for the two followers to

execute to maintain their distance and the shape of the swarm.
b. Simulated Platform Movement - The base platform of a swarm member was modelled in

the simulated environment and basic movement controls will be implemented through a
WeBots node controller. A platform shortlist must be started before this task can be
completed.

c. Simulated LiDAR Testing - A LiDAR sensor node was implemented and tested with a
controller to enable distance data to be read from the simulation node. A sensor shortlist is
required to complete this task.

d. Integrated Object Tracking - The LiDAR sensor was integrated with the platform node and
a basic tracking algorithm will be implemented to make the simulated bot follow a moving
object. Both the simulated platform and LiDAR sensor must be complete to start this task.

3. Virtual Swarm Development - The simulated environment, swarm, and movement algorithm
must be developed in order to complete the project.
a. World Configuration - The physics engine, time step, and operating arena must be properly

configured in order to run the simulation.
b. Swarm Robot Modelling - The three-participant swarm was constructed using the

prototype as a basis. The prototype from Taskset 2 must be complete in order to model the
swarm.

c. Lead Robot Control - Keyboard controls were set up to allow the user to give movement
commands to the lead robot. Task 2.b. must be complete in order to complete the lead
robot’s controller.

4. Simulated Algorithm Development - The follower movement algorithm was fully developed to
allow followers to correctly form the swarm’s shape.
a. Straight-Line Movement - The previously designed algorithm was implemented with a

single robot following a moving target at a fixed distance without changing direction. The
followers were given the ability to modulate their speed with the measured distance
between the leader and themselves. Tasksets 2 and 3 are required to be finished for this
task.

b. Turning Movement - Followers were given the ability to turn in place in order to follow a
turning leader. Tasksets 2 and 3 are required to be finished for this task.

c. Target Locking - Followers were given the ability to lock onto a lead robot’s reflector and
track it within a smaller scan window which could slide across the follower’s full angular
scan frame. Tasksets 2 and 3 are required for this task.

5. Virtual Testing - The constructed swarm members will be integrated into a cohesive group, the
swarm behavior will be replicated on hardware, and requirements qualification will be
completed.
a. Basic Movement Testing - Basic movement and sensor integration will be implemented on

single robots. The lead robot will be made to follow movement instructions sent from a
main controller. Task 4.b. must be completed before starting this task.

b. Object Tracking Testing - A follower will be made to track a moving target via the mounted
LiDAR sensor. Tasksets 3 and 4 must be completed before this point.

c. Movement Algorithm Testing - The moving target from task 5.b. will be followed at a fixed
distance as the target changes direction, following the designed movement algorithm. All
tasks must be complete up to this point.

d. 3-Participant Formation Movement Testing - All three participants will be tested together
to perform the swarm movement behavior with both follower robots following the leader.
Tasks 5.a., 5.b., and 5.c. must be completed before this point.

e. Final Qualification - The full system will be formally qualified to ensure that all
requirements are met. All previous tasks for the project must be finished to complete this
task.

Figure 1 - Subtask Dependency Graph

2.2 PROJECT TIMELINE/SCHEDULE

Figure 2 - Project Timeline

Major Project Planning was conducted from the beginning of the fall semester, August 17, through
October 19th. This planning included platform and sensor evaluation. During this time, we
evaluated which physical and simulated environments would be feasible for this project and
researched multiple sensor schemes. The next stage is Simulated Design Testing which lasted from
September 21st through November 2nd. This stage was made up of algorithm design, 3-D modeling
of the iRobot, simulated LiDAR design, and basic object tracking. The third stage started toward the
end of the fall semester and continued into the spring semester. The Virtual Swarm Development
phase included the setup of the simulated world, swarm robot modeling, and controlling the lead
robot with the keyboard. The next stage, Simulated Algorithm Development, is where the primary
development of our project took place. This included moving the swarm in a straight line, then
turning left and right, and object target locking. The fifth stage was Virtual Testing. This is where
we tested basic movement of the robots, object tracking, movement controls, formation of the
follower robots in relation to the leader, and implementation of music controls. The final phase of
our project was Documentation and Presentation.

With this 6-phased incremental development roadmap, the project was able to be completed in two
semesters. Additionally, many of these tasks could be conducted simultaneously, allowing us to
leverage our 6-person workforce.

2.3 OTHER RESOURCE REQUIREMENTS

Three iRobot Create motion platforms were originally required for each of the three swarm
participants. Additionally, a suitable testing arena in the CprE 288 lab was selected for physical
designing and testing. However, since all labs remained closed during the project’s second semester
due to COVID-19 restrictions, all of our prototyping, system design, testing, and final production
was conducted within the WeBots software suite.

2.4 FINANCIAL REQUIREMENTS

A $500-$750 budget was allocated to purchase the additional hardware required for this project such
as sensors, additional controllers, or third-party motion platforms. However, as the hardware
component of this project was removed and WeBots is a free software, this budget was unnecessary.

3 Design Implementation

3.1 PREVIOUS WORK AND LITERATURE

The most applicable course to this project is CprE 288 as the entire project is centered around the
CyBot platform from that course. The embedded systems principles of this course are the backbone
of this project’s implementation, albeit in a simulated manner. For the follower bots, we will need to
implement new designs to allow the bots to sense their surroundings using only the sensors on the
bots. The combination of three CyBots into a working design is something that was not done in
CprE 288, and required much more work and testing to achieve the desired swarm behavior.

There has been considerable research conducted in the area of swarm robotics, but not in this
project’s application[1][2]. Most swarm experiments are centered around groups of flying drones
such as quadcopters. These swarms usually navigate an area or perform flying maneuvers as a
group, sometimes with a designated leader guiding the swarm’s moves. Similarly to our project,
though, followers simply move to maintain their own local separation between swarm members.
The limitation to ground movement alone and to simple sensors is somewhat unique to this
project.

3.2 DESIGN THINKING

The design for our robot swarm stems from the already implemented Cybot created by the CprE
department. This design has been proven to work in single-bot designs, utilizing all of the equipped
sensors. We chose this platform because we are familiar with how it works, and because it can be
very accurately modelled in WeBots. Before making this decision, we researched other potential
platforms such as the Sphero Rovr. We stayed with the CyBot platform because it already has the
fundamental platform components needed and proven performance. All of this would have been
missing on the Sphero Rovr, requiring much more time spent finding compatible base robot models
and modelling new sensors from scratch. Apart from the platform, we have also decided to swap the
attached infrared sensor from the cybot, and replace it with the model of a LiDAR Mini sensor.

This new sensor allows for faster scanning speeds than the CyBot’s stock sensor and is more
accurate to boot. We considered a few different versions of a LiDAR sensor, including an iteration
that would allow for 360 ° scanning. We decided to go with the LiDAR Mini as it would easily be
modeled in WeBots and could realistically be added to the CyBot if this project is implemented in
hardware in the future.

3.3 PROPOSED DESIGN

Our design centers around the iRobot Create platform for two main reasons. Firstly, ISU has several
of the platforms available for the project which we planned to use at this project’s outset. This
would have allowed us to more easily fit within our required budget without limiting the movement
or sensor capabilities of the participants. Secondly, our simulation software, WeBots, has a prebuilt
node for the iRobot Create. This saved a considerable amount of time in modelling and improved
the realism of the simulation. This allowed us to pivot to implementing the project entirely within
WeBots when ISU’s labs remained closed at the beginning of this project’s second semester.

To allow follower robots to detect the leader’s position, a Parallax Standard Servo is mounted on the
CyBot with a sensor head attached to the servo arm assembly. This sensor head mounts a LiDAR
distance sensor capable of detecting the distance between the sensor and the nearest reflecting

object within the sensor’s line of sight. Dimensions of the servo arm and mounting assemblies were
found in design schematics available from the ETG.

By sweeping the sensor through a portion of its 180-degree Field of View (FoV), a picture of the
robot’s surroundings can be constructed. Using this setup, the follower robots are able to lock onto
the leader, figure out the leader’s position relative to themselves, and maneuver to maintain a
certain separation between the moving leader and itself. This results in a swarm-like movement
with followers simply focused on maintaining their local position as described in the figure below.

Figure 3 - Proposed Design Diagram
The determination of a follower’s next move is a product of the robot’s distance to the leader read
by the LiDAR sensor and the relative angle between the follower’s nose and the leader’s detected
position. If the follower reads the leader as moving too far left or right from the center of the
follower’s FoV, the scanning window will be slewed left or right to maintain a lock on the leader.
The follower will then steer relative to this angular rotation of the FoV window. Doing so will
realign the follower’s movement vector with that of the leader.

We elected to use WeBots for our modelling due to its high fidelity of sensor and physics modelling,
expansion, and wide availability of documentation. The prebuilt iRobot Create node was used as a
base for our simulated robot. From there, additional child nodes were added to model the CyBot’s
added acrylic plates, circuit boards, and extra hardware mounted on top of the base platform.
Dimensional schematics of these added components were, again, provided by the ETG.

Though we have had some difficulties with modelling all geometries correctly and ensuring that
child nodes interact with their surroundings properly, WeBots was still the best tool for our uses. It
had the best balance of expandability, simplicity of use, realism, and potential portability to
hardware. Now that we have a refined WeBots swarm model, it is possible for the design to be
ported to hardware in the future.

3.4 IMPLEMENTATION

WeBots Simulation

Each robot is composed of a node tree stemming from a Robot node. The base robot node has an
iRobot Create child node serving as the platform for each robot. This child node contains an
attribute which associates a controller with a given robot. It also contains a bodySlot attachment
which serves as a connecting point to attach additional nodes to the robot. By putting these added
nodes in the bodySlot, they will become accessible to the robot’s controller as well as being

physically attached to the robot’s physics model. This bodySlot contains the geometric models of all
components attached to the CyBot’s back, as well as the servo’s HingeJoint node.

A HingeJoint allows you to define an axis which other nodes can rotate around. In the case of our
servo model, the HingeJoint is configured as a motor with parameters identical to those of the
CyBot’s servo. The HingeJoint node has an endPoint attachment which acts like the robot’s
bodySlot. All nodes attached to the endPoint will rotate with the motor axle when the controller
commands it to turn.

The endPoint of the servo model contains the geometric components of the sensor head assembly,
the sensor block, and the sensor device itself. Modelled as a DistanceSensor node, the LiDAR sensor
contains a lookup table accessible by the controller. This table contains the data corresponding to
the distance between the sensor and the nearest object along its line of sight. We configured our
DistanceSensor to the data from the LiDAR Mini’s datasheet. The following class diagram describes
the node configuration of each robot in the simulation.

Figure 4 - WeBots Robot Node Class Diagram
The WeBots world simulator synchronizes all robot controllers and operations by the use of time
steps. A special internal WeBots function will pause code execution until a specified number of time
steps in the simulated world have passed. In the case of our simulation, we have one time step
pause per scan of the LiDAR sensor with a time step period of 10 ms. This allows us to simulate data
processing time, as well as limiting the sample rate of our distance sensor to 100 Hz as is specified in
the LiDAR Mini’s datasheet. The below figure shows a screenshot from our finished simulation.

Figure 5 - WeBots Simulation Screenshot

Follower Algorithm

The follower algorithm relies primarily on its ability to lock onto the leader’s reflector and track it in
a minimized window within its 120° scan frame. This is done in two phases. The first phase has the
follower continue its current movement operation while seeking a lock. This allows a follower to
potentially catch up to a lost formation or to complete a turn and then lock back onto the leader. As
a follower searches for a lock, it will sweep through its full scan frame until it reads a distance under
1 m. If the sensor reaches one end of the scan frame, then the scan direction is reversed and any
cached data from the current sweep is cleared.

Once a follower finds a reflector within 1 m, it will begin the second phase: active tracking. When a
reading under 1 m is first read, a flag is set indicating that a reflector has been found. It will
continue sampling across the face of the reflector until it reads a distance greater than 1 m,
indicating that it has found the opposite edge of the reflector. The flag is then reset, the direction of
the scan reversed, and the whole process starts again. If the follower manages to lose its lock on the
leader and no sample under 1 m is read, then the first phase begins again. This process allows for
very rapid tracking of a leader’s reflector and a higher response rate by the follower robots.

At every sample within the 1 m sensitivity range, a movement decision is made. If the angle at which
the sample was made is outside of a +/-4° deadzone around the target 30° angular offset, then the
robot will turn in place toward the measurement. If the angle is within the deadzone but the
measured distance is outside of a +/-2 cm deadzone around the target 60 cm separation distance,
then the forward speed of the robot is changed. For the iRobot Create model in WeBots, wheel
speeds are set as floating point values from -16 to 16 where 0 is stationary, negative values are
reverse, and positive values are forward. If the measured separation distance is greater than the
target, then the speed is set according to the following formula:

𝑠𝑝𝑒𝑒𝑑 = 20 * (10 * (𝑡𝑎𝑟𝑔𝑒𝑡 − 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒)/𝑡𝑎𝑟𝑔𝑒𝑡 + 20 * ((𝑡𝑎𝑟𝑔𝑒𝑡 − 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒)/𝑡𝑎𝑟𝑔𝑒𝑡)2)

If the measured separation distance is less than the target, then the speed is set according to the
following formula:

𝑠𝑝𝑒𝑒𝑑 = 20 * (10 * (𝑡𝑎𝑟𝑔𝑒𝑡 − 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒)/𝑡𝑎𝑟𝑔𝑒𝑡 − 20 * ((𝑡𝑎𝑟𝑔𝑒𝑡 − 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒)/𝑡𝑎𝑟𝑔𝑒𝑡)2)

Both equations are bounded by the algorithm within the +/-16 bounds of the platform. The use of a
quadratic equation here allows the robot to speed up quickly if it falls significantly behind the
target while also coming to a more gradual stop at low error distances. The coefficients for these
equations were determined experimentally. The following flowchart describes both the two-phase
locking functionality and movement decision making of the algorithm.

Figure 6 - Follower Algorithm Flowchart

Music Parser

Initially, we were going to write a program that would parse midi files. Midi files contain useful
information regarding the song information, such as lyrics, notes, pitch, frequency, tempo and time
signature. Unfortunately, due to time restrictions placed upon us, as well as the difficulty of parsing
midi files, we opted to parse the music information in a different way. We manually capture the
notes played by a song, as well as the duration of each note, and record the information into a text
file named with the song title. The program asks the user to specify the song that they would like to
parse (given that the music file that contains the notes and note durations is provided). If the music
file is found, the program would parse the information written. This makes it so we can get unique
dances for all songs. Within the program that parses the notes, we read each note played and write
the corresponding movement to an external .txt file. Each note corresponds to a different
movement that the leader will receive. The notes and the movement corresponding to the note are
as follows:

Note Movement

A Backwards (denoted as b in the movement file)

B Turn right in place (denoted as r in the
movement file)

C Turn left in place (denoted as l in the
movement file)

D Turn Right while moving (denoted as R in the
movement file)

E Turn Left while moving (denoted as L in the
movement file)

F Move Forward (denoted as f in the movement
file)

G Stop (denoted as s in the movement file)

Figure 7 - Note-Movement Conversion

Once we capture the note and record the movement into the text file, we read in the duration of
which the note is played. If a note is played for 250 ms (1/4th of a second) we would insert 2
periods(.), since each period represents a step which is 1/8th of a second.. The periods inform the
robot to hold the previous movement that was recorded. For example if the the note F#4 was played
for a duration of 250 ms, we would insert an f into the movement file followed by 2 periods so the
robot would continue moving forward for a total of 250 ms.

3.5 TECHNOLOGY CONSIDERATIONS

Our simulation software, WeBots, has some considerable simplifications in terms of environmental
interactions with the modelled robots. Though it has the capability to model noise in signals, we
were not able to implement this component this semester. Because we had to drop the hardware
component halfway through the project, redesigning the world model to add EMI interference and
noise was not practical.

These potential issues must be dealt with if the system is to be reproduced on actual hardware, as
there isn’t a way to effectively reproduce them in the simulator. Additionally, the controller code in
the simulation is not identical to the code needed to implement the actual sensor hardware we
originally planned to use, so this will need to be considered if the project is to be used as a physical
CprE 288 demo. Despite these shortcomings, though, WeBots is still the most effective simulation
tool that we can make use of, given our budget and time constraints.

3.6 DESIGN ANALYSIS

In the end, our proposed design seems to be effective for our purposes. One major limitation with
the design having only a single distance sensor is the fact that follower robots cannot tell if or when
the lead robot rotates in place. Additionally, if the leader abruptly changes its course at high speed,
it is possible for a follower to lose its lock and become lost. However, both of these movement cases
do not reflect the swarm movement of birds that we are trying to model with this project. After all,
most bird swarms aren’t capable of hovering and turning in place or quickly changing course
without collapsing on themselves. Therefore, we chose to limit our scope to following leader
movements that are more gradual in nature. This both alleviates some potential issues with the
design and reflects a more realistic model.

The overall design of our project changed going into the second semester. We originally planned on
developing the project using physical hardware, such as the iCreate Roombas available in Coover.
Unfortunately, due to restrictions placed upon us because of the pandemic, our project was
completely virtual. However, the design of how we wanted to implement the swarm movement
stayed relatively the same. Throughout this semester, we had to analyze the meaning of “swarm”
and what it means to be a leader robot. Throughout our PIRM presentations, we encountered
several questions revolving around if the swarm were to turn, would a new robot be assigned as the
leader or would the swarm still follow the predefined leader. We were also asked, “What swarm
movement are we basing our design on?” since bird swarm movements are different from other
swarms, such as fish swarms. With these questions, we were able to design our project more
thoroughly. Taking these design considerations into account, we were able to produce a design that
effectively met all of our project requirements in a fully virtual environment.

3.7 DEVELOPMENT PROCESS

Our project followed an adapted Agile development process. As the method has been proven in
other projects and has been emphasized through the course lectures, we decided it would be the
best fit. Incremental features were implemented in a sprint-like structure with time frames shifted
for the pace of the project. The flexibility of Agile proved to be a significant advantage at the
beginning of our second semester. Since we were forced to drop the hardware component of the
project halfway through, we were able to take the prototyped components from the project’s first
semester and redirect our future sprints with them as a basis.

3.8 PROJECT EVOLUTION

Our original plan for this project was a two-phase development roadmap. The first semester would
be spent prototyping our robot model based off of the CyBot’s specifications with some limited
controller development. To demonstrate the functionality of all robot subcomponents, a demo
object-avoidance controller was made which allowed a robot to maneuver through a simple obstacle
course.

We had initially started using WeBots solely as a method to inexpensively prototype our design with
the intention of recreating it in the Embedded Systems lab. However, when labs remained closed at
the beginning of the second semester, the entire focus of the project pivoted to WeBots once we
ensured it was a viable platform for full swarm implementation.

Three robot models were made from the prototype and adapted to each swarm participant’s needs.
A reflector cylinder was added to each robot to allow them to see each other. The lead robot’s
controller was augmented with keyboard controls so we could direct the swarm leader ourselves.
With all hardware modelling complete, our simple algorithm went through four revisions with
essential features added at each step. Starting as a basic straight-line follow-the-leader program
without any turning allowed, followers gained the capability to steer, control their speed
dynamically, turn in place, and finally lock onto only the lead robot’s reflector.

Some experimentation was done to see how scalable the swarm design was by adding additional
followers and having them latch onto another follower. This creates a large V pattern, similar to how
migratory geese fly in formation. Though tight turns tend to flatten and eventually collapse the
swarm’s shape, we found it had a remarkable ability to self-repair and regain its V shape. The below
figures show an example of this recovery ability on a swarm with two follower layers. The swarm
shape was recovered by simply driving the leader straight ahead until the swarm repaired itself.

Figure 8 - Collapsed Two-Tier Swarm

Figure 9 - Recovered Two-Tier Swarm

During the last month of the semester, we re-introduced the idea of making the swarm dance to a
song with a music parser. This parser would take data from a song and construct a dance pattern for
the lead robot. The lead robot reads this file and directs the swarm in a combined dance. Though
there were several unexpected twists and turns, we were able to meet all of our goals in this new
simulated environment.

4 Testing

4.1 UNIT TESTING

Unit testing of the followers’ LiDAR distance sensors were conducted using a series of modelled
reflective objects modelled in our simulation placed between 40 cm and 100 cm away in increments
of 5 cm from the robot’s sensor head. Sensor readings were taken to verify correct distance
measurements from the follower robot. Once verified, this test set was performed again after
integrating the distance-based variable speed control function. At each increment, the output speed
of the speed controller was verified against a table that we created of expected speeds for a given
distance.

To test the servo motor on each follower, a special controller was made which would step the motor
through the full 120° sweep frame in 1° increments. This controller was run with the simulation
paused every 5 intervals. With each pause, the position of the servo and sensor head was verified
within the simulation.

Lastly, the leader’s keyboard-controlled movement function was verified with a set of sample
maneuvers. Once the key patterns were entered by the controller, the leader’s behavior was
observed to verify the correct movement of the leader.

4.2 SYSTEM TESTING

Once all components of each robot were tested and verified to be functional, the three robots were
integrated into a single swarm. First, it was verified that each follower could lock onto the leader’s
reflector by use of the servo and LiDAR sensor in combination with each other. Both followers were
positioned 60 cm from the leader’s reflector and the simulation was run. When working correctly,
both followers would jog their servo-mounted sensors back and forth across the reflector with only
one sample made on either side.

With the Lock-On functionality verified, the lead robot was moved forward for varying distances.
While maintaining lock, the followers would record the maximum and minimum distances read by
their distance sensors. This test passes if both followers speed up and slow down properly with the
leader without losing a sensor lock or falling more than 6 cm outside of the 60 cm target separation
distance.

Once the Straight-Line Test passed, a turn test was performed to check the correct operation of the
differential steering capability of the movement algorithm. Like the previous test, the leader was
moved forward for varying distances with occasional stops. In addition the leader would turn left or
right while moving forward. This test passes if the followers meet all of the Straight-Line Test
requirements, as well as maintaining the triangular shape of the formation. Like with bird flocks, a
slight flattening of the formation in the direction of the turn is tolerated, but the swarm’s shape
should not collapse.

After turning maneuvers were verified, an extended run of the turn test was performed for 30
simulation minutes. This was done in WeBot’s Accelerated Mode, rendering the simulation at 10x
speed. While maneuvering, the swarm’s shape was observed to make sure it did not collapse. After
maneuvering for this extended time, the maximum and minimum readings of each follower were
checked to ensure the 10% error tolerance was not violated.

4.3 ACCEPTANCE TESTING

During the testing phase, we were able to video record our simulation while it was running. In order
to ensure that the functional requirements have been met, we designed a sample maneuver set,
recorded the simulation, and delivered it to the client for approval. A live demo was also shown to
the client and approved. We also created our own secondary test cases for additional proofs of
concept.

4.4 RESULTS

All LiDAR, servo, and speed control unit tests passed as expected. As there is no noise in the
simulated system, all three test sets came out exactly according to their expected values. With a
stationary leader, error margins were under 1%. Straight-line movement error margins tended to not
exceed 4%, except in the case of illegal reversing movements. With turning maneuvers added, the
error margin did not exceed 8%. This sits well within our 10% allowable margin. Even over the
extended-time maneuvering test, the error margin did not break our limit.

When experimenting with illegal movements, it was found that extended periods of reversing or
turning tightly toward one follower. As these maneuvers do not reflect the real-world behavior of
bird flocks in flight, though, they are not allowed in this project’s model. The below figure shows
one of these collapses.

Figure 10 - Collapsed Formation After Repeated Illegal Movements

5 Closing Material

5.1 CONCLUSION

During the fall semester, we completed our preliminary modelling of the CyBot platform in WeBots.
We selected the WeBots software suite to conduct our simulated prototyping because it offers the
greatest level of realism without an excessive setup overhead cost. Additionally, the software is free
with plenty of documentation available. Other similar simulation software platforms are either too
simplified to be useful for our testing, have an excessive amount of setup required to model
different designs, or don’t allow for realistic controller development. Though the controllers used in
WeBots are relatively simplified with sensors and actuators being modelled as lookup tables rather
than actual memory-mapped components, it still allows us to test the system at a higher level. By
use of this controller scheme, we are still able to design and test the underlying movement
algorithm, albeit with a slightly more abstracted implementation.

Our simulated model includes the iRobot Create base, added acrylic plates, circuit boards, servo,
and sensor head assembly. We chose to use ISU’s Cybot design as a platform due to its simplicity
and cost-effectiveness. Since the university already has hardware platforms available, using them
would eliminate the cost of purchasing a new robot platform for each of the three individual swarm
members. Additionally, the CyBot already has all of the three required components for a follower: a
controllable movement platform, a distance sensor to measure separation from the leader, and a
rotating sensor head assembly mounted on a programmable servo. The only required addition
would be an optional improved LiDAR sensor for the two followers to more accurately and quickly
perform distance measurements.

The simulated robot’s LiDAR sensor and servo is controllable by the robot’s controller code. This
controller is written to resemble the code of a potential future hardware implementation. The
controller implements our follower algorithm design with straight-line speed control, turning
capabilities, and the ability to lock onto a target reflector within a follower’s scan frame. This
controller is able to direct follower movements in the swarm without breaking our required position
error tolerance.

During the spring semester, we completed our follower algorithm and successfully simulated swarm
behavior using the WeBots software suite. Additionally, we implemented a parsing tool to convert
music files into sets of instructions in the form of a "dance routine" for the leader to implement as
follower bots used the follower algorithm to replicate these movements, displaying swarm behavior.
While .midi files were not directly parsed due to time constraints, music files were manually
abstracted into notes, with each note corresponding with an action (i.e. "dance move") as described
in the section 3.4 table. Overall, the project was successful, meeting all previously-defined
requirements and functioned as intended.

5.2 REFERENCES

[1] Tan, Ying, and Zhong-Yang Zheng. “Research Advance in Swarm Robotics.” Defence
Technology, vol. 9, no. 1, 2013, pp. 18–39., doi:10.1016/j.dt.2013.03.001.

[2] Schranz, Melanie, et al. “Swarm Robotic Behaviors and Current Applications.” Frontiers in
Robotics and AI, vol. 7, 2020, doi:10.3389/frobt.2020.00036.

Appendices

APPENDIX I OPERATION MANUAL

Step 1. Setup

This project revolves around the WeBots simulation software, available for free from
cyberbotics.com. All testing and demonstrations are done through this software suite. Begin by
downloading and installing the software from Cyberbotics’s website. Additionally, a local clone of
our repository will be needed. This repo can be found at git.ece.iastate.edu/sd/sdmay21-40. With
the software installed and repository pulled, the world file containing the project can now be
opened.

Step 2. Opening Project

With WeBots installed and opened, click File > Open World… as seen below.

Navigate to the directory where your local copy of the repository is located. From there, select
sdmay21-40/WeBots/test/worlds/testWorld.wbt. Once open, your window should appear like the
image below with three robots positioned in a triangle.

If the simulation starts automatically running, click the pause button in the toolbar across the top
of the window as seen in the following image.

https://cyberbotics.com/
https://git.ece.iastate.edu/sd/sdmay21-40

To display a ray showing the orientation of the robots’ distance sensors in the simulation world,
check the option under View > Optional Rendering > Show DistanceSensor Rays. Enabling this
option renders a projection line from each distance sensor in the world that changes from red to
green once it reads an object. This will allow you to see exactly what each of the followers sees.

Step 3. Compiling Controllers

Once you have the world configured, you will need to compile each robot’s controller to ensure
correct operation. To do this, click the Open File button in the Text Editor pane at the right of the
window. You may need to resize the pane if the button is not visible. If the Text Editor pane is not
open, enable it under Tools > Text Editor in the File Menu Bar.

The three controllers will be located at
sdmay21-40/WeBots/test/controllers/create_follower_controller_1/create_follower_controller_1.c,
sdmay21-40/WeBots/test/controllers/create_follower_controller_2/create_follower_controller_2.c,
and sdmay21-40/WeBots/test/controllers/create_leader_controller/create_leader_controller.c
respectively. Once all three controllers are open in the Text Editor pane, select
create_follower_controller_1.c and click the Compile button at the top of the Text Editor pane.

This will begin building the controller currently selected and a printout of its progress will appear
in the console at the bottom of the window. Once the compilation is complete, a success window
will appear. Click Reload.

If the console prints the following message:

Then no compilation is necessary for your WeBots install. Repeat the above compilation process for
create_follower_controller_2.c and create_leader_controller.c.

Step 4. Running Simulation

With all three controllers compiled, the simulation can now be run. Begin running the simulation
by clicking either the Real-Time Simulation or Accelerated Simulation button at the top of the
Simulation View pane as seen below.

Running in Real-Time Mode has a 1:1 correspondence with simulation time vs real time. Accelerated
Mode will run the simulation as fast as the simulator is able. Because the speed of the iRobot Create
is so slow, it is recommended to use Accelerated Mode. To pause the simulation, click the run
button corresponding to your current mode again. To reset the simulation back to the original
position, click the Reset button as shown below.

If a pop-up window appears asking to save changes, click Discard. Once the simulation begins
running, both followers will immediately lock onto the leader and position themselves around it.

Step 5. Controlling Swarm

With the simulation running, click anywhere on the checkered floor board to select the Simulation
View panel. With this panel selected, you can now control the leader robot with your keyboard.
Standard WASD keys are used for control forward, left, reverse, and right respectively. As a general
rule, the swarm model only allows the lead robot to move forward and make arcing turns left and
right as bird flocks in real-life do not instantaneously stop, turn in place, or move in reverse.
Though the swarm is generally able to handle illegal moves outside of this envelope, it is possible to
collapse the formation by reversing into the followers for long periods of time, turning sharply
toward one follower for several rotations, or running the swarm into the arena’s walls.

An alternate way to control the swarm is using the movements recorded from the music parser. In
order to parse a music file, a text file with the notes played as well as the duration of each note
must be provided.

Compile the music parser, which is found under our project in the folder labeled Music Parser,
using the following steps.

1. gcc -c musicParser.c
2. gcc -o parser musicParser.o

You will now have an executable file which can be run by writing ./parser. Once the program is run,
you will be asked to input in the name of the song you would like to parse. The name will be the
name of the note information file, excluding the .txt extension.

If the file is found, the program will parse the notes and create a file labeled song.txt which
highlights the movements that the robot will dance to. After the file is created, place the song.txt
file into the leader controller folder which is located at
WeBots/test/controllers/create_leader_controller. Once you run the world you can start the dance
sequence by pressing the r key on your keyboard.

APPENDIX II ALTERNATIVE VERSIONS

Hardware Implementation

Our original project vision was to produce the three-robot system with a hardware implementation.
This system would be composed of three modified CyBot robots from the CprE 288 Embedded
Systems lab. However, due to lab closures from the COVID-19 pandemic, the hardware component
of our project was dropped and the whole project was completed in the WeBots software suite.

360° LiDAR

An early idea for the design of our participant robot was to use a 360° rotating LiDAR sensor for the
follower robots. Using this sensor would allow us to perform scans much faster and with more
accuracy than our servo-mounted design, however designing a sensor mount presented several
complications. Since the system would require two sensors at play, there was a risk of cross-talk
between sensors if their rotations accidentally synchronized with the LiDAR heads facing each
other. This could be overcome by mounting one sensor slightly higher than the other, but this
approach would not be very scalable if more robots were added to the system. The mount for this
sensor would also require fabricating a special bracket for the CyBot while our final design required
no modifications to the CyBot body.

Single-Decision Sweep

Our initial algorithm design only made movement decisions after a full end-to-end sweep of the
sensor was performed. In this case, a follower robot would begin its sweep at the left hand side of its
sliding scanning window. It would then make samples at 1° increments across the leader’s reflector
until either the right hand bound of the window frame was reached or the right edge of the
reflector was detected. The shortest measured distance would be recorded along with the angle
position at which it was made. After the sweep was complete, this sample would then be processed
to determine the robot’s movement. The same process would then be executed in the opposite
direction, scanning right to left.

This approach would give a more precise position of where the leader is in relation to a given
follower, but ended up producing a larger position error margin. Because movements could only be
determined after a full sweep was complete rather than at every sample and a full sweep consisted
of 4-7 samples, the response time of followers was increased by 4-7 times. Additionally, since there
is an 8° deadzone around the target offset angle of 30°, having a possible error of 4-7° would not be
sufficient to produce “wagging” effect as a follower reads each edge of the leader’s reflector.

Multi-Sensor

One large drawback to our design is the fact that followers are not sensitive to the leader turning in
place. This is caused by our choice to make the leader’s reflector a cylinder to ensure that LiDAR
measurements are not reflected away from the follower’s sensor. However, this makes it impossible
to measure the leader’s orientation. One of our alternative designs involved multiple LiDAR sensors
tracking multiple reflectors mounted in different positions on the leader’s body. This would allow
the followers to tell exactly which direction the leader’s nose is facing and grant them the capability
to orient the entire swarm around the leader even when turning in place. To produce such a design,
though, would require significant redesign to the algorithm and the CyBot’s body. Since this would

be impractical to reproduce in a hardware implementation, we chose to stick to the CyBot base
platform.

APPENDIX III OTHER CONSIDERATIONS

Music Parsing

Initially, we considered parsing the music in a completely different way. Through research on
available sensors that are able to be implemented on a physical microcontroller, we identified that
the LM393 Sound Detection sensor was an effective sensor to pick up on frequencies played by a
song. However, this sensor was not available on WeBots so we initially entertained the idea of
developing the sensor from scratch onto WeBots. However due to our inexperience, this idea was
quickly scrapped. We later decided to parse a musical file, and have the leader controller read from
the parsed information. We originally were going to parse either .aiff or .midi files and after
thorough research we identified that .midi files were better for our case. However due to time
restrictions, and the complexity of parsing midi files, we decided to parse music files as how it is
defined above.

Dance Movements

Once the robots took in the dance movements (from either a musical file or from keyboard
command), we realized that if the leader robot were to spin in place, our current design does not
allow for the followers to pick up on that motion. Instead, the followers would remain in place
waiting for the next movement instruction. We considered sending in that specific instruction to
the followers as well. However, we decided not to since it goes against a core element of our project,
which is that only the leader is aware of the movement instructions.

APPENDIX IV CODE

Leader Controller Code
/*
* Description: Controller for leader robot
*/

/* include headers */
#include <math.h>
#include <stdio.h>
#include <stdlib.h>
#include <time.h>

#include <webots/distance_sensor.h>
#include <webots/led.h>
#include <webots/motor.h>
#include <webots/position_sensor.h>
#include <webots/receiver.h>
#include <webots/robot.h>
#include <webots/touch_sensor.h>
#include <webots/keyboard.h>

/* device stuff */
#define BUMPERS_NUMBER 2
#define BUMPER_LEFT 0
#define BUMPER_RIGHT 1
static WbDeviceTag bumpers[BUMPERS_NUMBER];
static const char *bumpers_name[BUMPERS_NUMBER] = {"bumper_left", "bumper_right"};

#define CLIFF_SENSORS_NUMBER 4
#define CLIFF_SENSOR_LEFT 0
#define CLIFF_SENSOR_FRONT_LEFT 1
#define CLIFF_SENSOR_FRONT_RIGHT 2
#define CLIFF_SENSOR_RIGHT 3
static WbDeviceTag cliff_sensors[CLIFF_SENSORS_NUMBER];
static const char *cliff_sensors_name[CLIFF_SENSORS_NUMBER] = {"cliff_left", "cliff_front_left",
"cliff_front_right",

"cliff_right"};

#define LEDS_NUMBER 3
#define LED_ON 0
#define LED_PLAY 1
#define LED_STEP 2
static WbDeviceTag leds[LEDS_NUMBER];
static const char *leds_name[LEDS_NUMBER] = {"led_on", "led_play", "led_step"};

static WbDeviceTag receiver;
static const char *receiver_name = "receiver";

WbDeviceTag left_motor, right_motor, left_position_sensor, right_position_sensor, servo, lidar;

/* Misc Stuff */
#define MAX_SPEED 16
#define HALF_SPEED 8
#define FIVE_SPEED 5
#define THREE_SPEED 3
#define ZERO_SPEED 0

#define WHEEL_RADIUS 0.031
#define AXLE_LENGTH 0.271756
#define ENCODER_RESOLUTION 507.9188

/* helper functions */
static int get_time_step() {
static int time_step = -1;
if (time_step == -1)
time_step = (int)wb_robot_get_basic_time_step();

return time_step;
}

static void step() {
if (wb_robot_step(get_time_step()) == -1) {
wb_robot_cleanup();
exit(EXIT_SUCCESS);

}
}

static void init_devices() {
int i;

receiver = wb_robot_get_device(receiver_name);
wb_receiver_enable(receiver, get_time_step());

for (i = 0; i < LEDS_NUMBER; i++)
leds[i] = wb_robot_get_device(leds_name[i]);

for (i = 0; i < BUMPERS_NUMBER; i++) {
bumpers[i] = wb_robot_get_device(bumpers_name[i]);
wb_touch_sensor_enable(bumpers[i], get_time_step());

}

for (i = 0; i < CLIFF_SENSORS_NUMBER; i++) {
cliff_sensors[i] = wb_robot_get_device(cliff_sensors_name[i]);
wb_distance_sensor_enable(cliff_sensors[i], get_time_step());

}

left_motor = wb_robot_get_device("left wheel motor");
right_motor = wb_robot_get_device("right wheel motor");
servo = wb_robot_get_device("servo motor 1");
lidar = wb_robot_get_device("lidar sensor 1");
wb_motor_set_position(left_motor, INFINITY);
wb_motor_set_position(right_motor, INFINITY);
wb_motor_set_velocity(left_motor, 0.0);
wb_motor_set_velocity(right_motor, 0.0);
wb_motor_set_position(servo, 0.0);

left_position_sensor = wb_robot_get_device("left wheel sensor");
right_position_sensor = wb_robot_get_device("right wheel sensor");
wb_position_sensor_enable(left_position_sensor, get_time_step());
wb_position_sensor_enable(right_position_sensor, get_time_step());
wb_distance_sensor_enable(lidar, get_time_step());

}

static bool is_there_a_collision_at_left() {
return (wb_touch_sensor_get_value(bumpers[BUMPER_LEFT]) != 0.0);

}

static bool is_there_a_collision_at_right() {
return (wb_touch_sensor_get_value(bumpers[BUMPER_RIGHT]) != 0.0);

}

static void fflush_ir_receiver() {
while (wb_receiver_get_queue_length(receiver) > 0)
wb_receiver_next_packet(receiver);

}

static bool is_there_a_virtual_wall() {
return (wb_receiver_get_queue_length(receiver) > 0);

}

static bool is_there_a_cliff_at_left() {
return (wb_distance_sensor_get_value(cliff_sensors[CLIFF_SENSOR_LEFT]) < 100.0 ||

wb_distance_sensor_get_value(cliff_sensors[CLIFF_SENSOR_FRONT_LEFT]) < 100.0);
}

static bool is_there_a_cliff_at_right() {
return (wb_distance_sensor_get_value(cliff_sensors[CLIFF_SENSOR_RIGHT]) < 100.0 ||

wb_distance_sensor_get_value(cliff_sensors[CLIFF_SENSOR_FRONT_RIGHT]) < 100.0);
}

static bool is_there_a_cliff_at_front() {
return (wb_distance_sensor_get_value(cliff_sensors[CLIFF_SENSOR_FRONT_LEFT]) < 100.0 ||

wb_distance_sensor_get_value(cliff_sensors[CLIFF_SENSOR_FRONT_RIGHT]) < 100.0);
}

static void passive_wait(double sec) {
double start_time = wb_robot_get_time();
do {
step();

} while (start_time + sec > wb_robot_get_time());
}

static double randdouble() {
return rand() / ((double)RAND_MAX + 1);

}

static void moveForward(int spd) {
wb_motor_set_velocity(left_motor, spd);
wb_motor_set_velocity(right_motor, spd);

}

static void moveBackward(int spd) {
wb_motor_set_velocity(left_motor, -spd);
wb_motor_set_velocity(right_motor, -spd);

}

static void stop() {
wb_motor_set_velocity(left_motor, ZERO_SPEED);
wb_motor_set_velocity(right_motor, ZERO_SPEED);

}

static void turn(int left, int right) {
// stop();
// step();
wb_motor_set_velocity(left_motor, left);
wb_motor_set_velocity(right_motor, right);
// step();

}

double deg_2_rad(double deg){
return deg * 3.14159 / 180;

}

static void turn_servo(double angle) {
angle = deg_2_rad(angle);
if(angle > 1.5708){
angle = 1.5708;

}
else if(angle < -1.5708){
angle = -1.5708;

}
wb_motor_set_position(servo, angle);

}

static double read_lidar() {
passive_wait(.00001);
return wb_distance_sensor_get_value(lidar) * 10 / 1000;

}

static bool contains(int arr[], int value) {
int i;
for(i = 0; i < 4; i++) {
if(arr[i] == value) return true;

}
return false;

}

/* main */
int main(int argc, char **argv) {
printf("Leader Controller started...\n");
wb_robot_init();
wb_keyboard_enable(get_time_step());
step();
init_devices();
srand(time(NULL));
int rando = 0;
wb_led_set(leds[LED_ON], true);
passive_wait(0.5);

int speed;

int keys[4] = { -1, -1, -1 -1 };
bool run = true;
while(run){
keys[0] = wb_keyboard_get_key();
keys[1] = wb_keyboard_get_key();
keys[2] = wb_keyboard_get_key();
keys[3] = wb_keyboard_get_key();
// printf("%d %d %d %d\n", keys[0], keys[1], keys[2], keys[3]);
// press q to quit
if(contains(keys, 80)) run = false;
// move forward (w)
else if(contains(keys, 87)) {
if(contains(keys, 68))
turn(THREE_SPEED, FIVE_SPEED); // turn forward right (w+d)

else if(contains(keys, 65))
turn(FIVE_SPEED, THREE_SPEED); // turn forward left (w+a)

else moveForward(FIVE_SPEED); // else move forward
}
// move backward (s)
else if(contains(keys, 83)) {
if(contains(keys, 68)) turn(-8, -16); // if turning right
else if(contains(keys, 65)) turn(-16, -8); // if turning left
else moveBackward(FIVE_SPEED); // else move forward

}
// right in place
else if(contains(keys, 68)) {
turn(-6, 6);

}
// left in place
else if(contains(keys, 65)) {
turn(6, -6);

}
// no keys are pressed
else if(keys[0] == -1 && keys[1] == -1 && keys[2] == -1 && keys[3] == -1) {
stop();

}
step();

}

wb_keyboard_disable();
wb_robot_cleanup();

return 0;
}

Left Follower Controller Code
/*
* Description: Controller for left follower robot
*/

/* include headers */
#include <math.h>
#include <stdio.h>
#include <stdlib.h>
#include <time.h>

#include <webots/distance_sensor.h>
#include <webots/led.h>
#include <webots/motor.h>
#include <webots/position_sensor.h>
#include <webots/receiver.h>
#include <webots/robot.h>
#include <webots/touch_sensor.h>

/* device stuff */
#define BUMPERS_NUMBER 2
#define BUMPER_LEFT 0
#define BUMPER_RIGHT 1
static WbDeviceTag bumpers[BUMPERS_NUMBER];
static const char *bumpers_name[BUMPERS_NUMBER] = {"bumper_left", "bumper_right"};

#define CLIFF_SENSORS_NUMBER 4
#define CLIFF_SENSOR_LEFT 0
#define CLIFF_SENSOR_FRONT_LEFT 1
#define CLIFF_SENSOR_FRONT_RIGHT 2
#define CLIFF_SENSOR_RIGHT 3
static WbDeviceTag cliff_sensors[CLIFF_SENSORS_NUMBER];
static const char *cliff_sensors_name[CLIFF_SENSORS_NUMBER] = {"cliff_left", "cliff_front_left",
"cliff_front_right",

"cliff_right"};

#define LEDS_NUMBER 3
#define LED_ON 0
#define LED_PLAY 1
#define LED_STEP 2
static WbDeviceTag leds[LEDS_NUMBER];
static const char *leds_name[LEDS_NUMBER] = {"led_on", "led_play", "led_step"};

static WbDeviceTag receiver;
static const char *receiver_name = "receiver";

WbDeviceTag left_motor, right_motor, left_position_sensor, right_position_sensor, servo, lidar;

/* Misc Stuff */
#define MAX_SPEED 8
#define NULL_SPEED 0
#define HALF_SPEED 8
#define MIN_SPEED -16
#define CENTER_ANGLE -30
#define ANGLE_RANGE 60
#define TARGET_DISTANCE 0.6
#define ST_CENTER_SPEED 20
#define ST_FACTOR_1 10
#define ST_FACTOR_2 2
#define TN_CENTER_SPEED 8
#define TN_FACTOR_1 1
#define TN_FACTOR_2 1
#define MIN_SAFE_ANGLE -24
#define MAX_SAFE_ANGLE -36

#define WHEEL_RADIUS 0.031
#define AXLE_LENGTH 0.271756
#define ENCODER_RESOLUTION 507.9188

/* helper functions */
static int get_time_step() {
static int time_step = -1;
if (time_step == -1)
time_step = (int)wb_robot_get_basic_time_step();

return time_step;
}

static void step() {
if (wb_robot_step(get_time_step()) == -1) {

wb_robot_cleanup();
exit(EXIT_SUCCESS);

}
}

static void init_devices() {
int i;

receiver = wb_robot_get_device(receiver_name);
wb_receiver_enable(receiver, get_time_step());

for (i = 0; i < LEDS_NUMBER; i++)
leds[i] = wb_robot_get_device(leds_name[i]);

for (i = 0; i < BUMPERS_NUMBER; i++) {
bumpers[i] = wb_robot_get_device(bumpers_name[i]);
wb_touch_sensor_enable(bumpers[i], get_time_step());

}

for (i = 0; i < CLIFF_SENSORS_NUMBER; i++) {
cliff_sensors[i] = wb_robot_get_device(cliff_sensors_name[i]);
wb_distance_sensor_enable(cliff_sensors[i], get_time_step());

}

left_motor = wb_robot_get_device("left wheel motor");
right_motor = wb_robot_get_device("right wheel motor");
servo = wb_robot_get_device("servo motor 1");
lidar = wb_robot_get_device("lidar sensor 1");
wb_motor_set_position(left_motor, INFINITY);
wb_motor_set_position(right_motor, INFINITY);
wb_motor_set_velocity(left_motor, 0.0);
wb_motor_set_velocity(right_motor, 0.0);
wb_motor_set_position(servo, 0.0);

left_position_sensor = wb_robot_get_device("left wheel sensor");
right_position_sensor = wb_robot_get_device("right wheel sensor");
wb_position_sensor_enable(left_position_sensor, get_time_step());
wb_position_sensor_enable(right_position_sensor, get_time_step());
wb_distance_sensor_enable(lidar, get_time_step());

}

static void fflush_ir_receiver() {
while (wb_receiver_get_queue_length(receiver) > 0)
wb_receiver_next_packet(receiver);

}

static void stop() {
wb_motor_set_velocity(left_motor, -NULL_SPEED);
wb_motor_set_velocity(right_motor, -NULL_SPEED);

}

static void passive_wait(double sec) {
double start_time = wb_robot_get_time();
do {
step();

} while (start_time + sec > wb_robot_get_time());
}

static void turnLeftM() {
wb_motor_set_velocity(left_motor, -6);
wb_motor_set_velocity(right_motor, 6);

}
static void turnRightM() {
wb_motor_set_velocity(left_motor, 8);
wb_motor_set_velocity(right_motor, -8);

}

static void go_forward_proportional(double distance){
double speedScale, speed;
if(distance > 0.6){
speedScale = (distance - TARGET_DISTANCE) / TARGET_DISTANCE;
speed = ST_CENTER_SPEED * speedScale * (ST_FACTOR_1 + ST_FACTOR_2 * speedScale);

}
else{
speedScale = (distance - TARGET_DISTANCE) / TARGET_DISTANCE;
speed = ST_CENTER_SPEED * speedScale * (ST_FACTOR_1 - ST_FACTOR_2 * speedScale);

}

if(speed > MAX_SPEED) speed = MAX_SPEED;

if(speed < MIN_SPEED) speed = MIN_SPEED;
wb_motor_set_velocity(left_motor, speed);
wb_motor_set_velocity(right_motor, speed);

}

static void process_movement(double distance, double angle){
if(distance < 1){
if(angle > MIN_SAFE_ANGLE){
turnRightM(); //turn left if too far right

}
else if(angle < MAX_SAFE_ANGLE){
turnLeftM(); //turn right if too far left

}
else if(distance > TARGET_DISTANCE + 0.02 || distance < TARGET_DISTANCE - 0.02){
go_forward_proportional(distance); //go forward proportional to distance from leader

}
else if(distance <= TARGET_DISTANCE + 0.02 || distance >= TARGET_DISTANCE - 0.02){
stop(); //stop if within margin of safety

}
}

}

double deg_2_rad(double deg){
return deg * 3.14159 / 180;

}

static void turn_servo(double angle) {
angle = deg_2_rad(angle);
if(angle > 1.5708){
angle = 1.5708;

}
else if(angle < -1.5708){
angle = -1.5708;

}
wb_motor_set_position(servo, angle);

}

static double read_lidar() {
return (wb_distance_sensor_get_value(lidar) * 10 / 1000);

}

/* main */
int main(int argc, char **argv) {
wb_robot_init();

printf("Follower Controller 1 started...\n");

init_devices();
srand(time(NULL));

wb_led_set(leds[LED_ON], true);
passive_wait(0.5);

double angle = -50;
int turnDir = 1;
double deltaAngle = 1;
double minDist = 1000;
double temp = 0;
int isTurn = 1;
double maxDist = 0;
int counter = 0;
int foundLeaderFlag = 0;
turn_servo(angle);
while (true) {
isTurn = 1;
temp = 0;
while(isTurn){

if(turnDir == 0){//determines server movement direction
temp = read_lidar();
if(temp < minDist) minDist = temp;
if(temp < 1 && temp > maxDist) maxDist = temp;
process_movement(temp, angle); //decide movement from sensor data
angle -= deltaAngle;//update current angle
turn_servo(angle);//turn the servo

if(temp < 1 && !foundLeaderFlag) foundLeaderFlag = 1; //indicates leading edge of leader has been
found

else if(temp > 1 && foundLeaderFlag){ //skips to next sweep if trailing edge of leader has been
found

turnDir = 1;
isTurn = 0;
foundLeaderFlag = 0;

}
}
else
{
temp = read_lidar();
if(temp < minDist) minDist = temp;
if(temp < 1 && temp > maxDist) maxDist = temp;
process_movement(temp, angle); //decide movement from sensor data
angle += deltaAngle; //update current angle
turn_servo(angle); //turn servo

if(temp < 1 && !foundLeaderFlag) foundLeaderFlag = 1; //indicates leading edge of leader has been
found

else if(temp > 1 && foundLeaderFlag){ //skips to next sweep if trailing edge of leader has been
found

turnDir = 0;
isTurn = 0;
foundLeaderFlag = 0;

}
}
if(angle >= CENTER_ANGLE + ANGLE_RANGE) { //maximum angle for unlocked scan sweep
turnDir = 0;
isTurn = 0;
foundLeaderFlag = 0;

}
if(angle <= CENTER_ANGLE - ANGLE_RANGE) { //maximum angle for unlocked scan sweep
turnDir = 1;
isTurn = 0;
foundLeaderFlag = 0;

}
counter++;
if(counter > 999) { //printout for error margin measurement
counter = 0;
printf("Max dist Left Bot: %f\nMin dist Left Bot: %f\n",maxDist,minDist);
minDist = 1000;
maxDist = 0;

}
fflush_ir_receiver();
step();

}
}

return EXIT_SUCCESS;
}

Right Follower Controller Code
/*
* Description: Controller for right follower robot
*/

/* include headers */
#include <math.h>
#include <stdio.h>
#include <stdlib.h>
#include <time.h>

#include <webots/distance_sensor.h>
#include <webots/led.h>
#include <webots/motor.h>
#include <webots/position_sensor.h>
#include <webots/receiver.h>
#include <webots/robot.h>
#include <webots/touch_sensor.h>

/* device stuff */
#define BUMPERS_NUMBER 2
#define BUMPER_LEFT 0
#define BUMPER_RIGHT 1
static WbDeviceTag bumpers[BUMPERS_NUMBER];
static const char *bumpers_name[BUMPERS_NUMBER] = {"bumper_left", "bumper_right"};

#define CLIFF_SENSORS_NUMBER 4
#define CLIFF_SENSOR_LEFT 0
#define CLIFF_SENSOR_FRONT_LEFT 1
#define CLIFF_SENSOR_FRONT_RIGHT 2
#define CLIFF_SENSOR_RIGHT 3
static WbDeviceTag cliff_sensors[CLIFF_SENSORS_NUMBER];
static const char *cliff_sensors_name[CLIFF_SENSORS_NUMBER] = {"cliff_left", "cliff_front_left",
"cliff_front_right",

"cliff_right"};

#define LEDS_NUMBER 3
#define LED_ON 0
#define LED_PLAY 1
#define LED_STEP 2
static WbDeviceTag leds[LEDS_NUMBER];
static const char *leds_name[LEDS_NUMBER] = {"led_on", "led_play", "led_step"};

static WbDeviceTag receiver;
static const char *receiver_name = "receiver";

WbDeviceTag left_motor, right_motor, left_position_sensor, right_position_sensor, servo, lidar;

/* Misc Stuff */
#define MAX_SPEED 8
#define NULL_SPEED 0
#define HALF_SPEED 8
#define MIN_SPEED -16
#define CENTER_ANGLE 30
#define ANGLE_RANGE 60
#define TARGET_DISTANCE 0.6
#define ST_CENTER_SPEED 20
#define ST_FACTOR_1 10
#define ST_FACTOR_2 2
#define TN_CENTER_SPEED 8
#define TN_FACTOR_1 1
#define TN_FACTOR_2 1
#define MIN_SAFE_ANGLE 36
#define MAX_SAFE_ANGLE 24

#define WHEEL_RADIUS 0.031
#define AXLE_LENGTH 0.271756
#define ENCODER_RESOLUTION 507.9188

/* helper functions */
static int get_time_step() {
static int time_step = -1;
if (time_step == -1)
time_step = (int)wb_robot_get_basic_time_step();

return time_step;
}

static void step() {
if (wb_robot_step(get_time_step()) == -1) {

wb_robot_cleanup();
exit(EXIT_SUCCESS);

}
}

static void init_devices() {
int i;

receiver = wb_robot_get_device(receiver_name);
wb_receiver_enable(receiver, get_time_step());

for (i = 0; i < LEDS_NUMBER; i++)
leds[i] = wb_robot_get_device(leds_name[i]);

for (i = 0; i < BUMPERS_NUMBER; i++) {
bumpers[i] = wb_robot_get_device(bumpers_name[i]);
wb_touch_sensor_enable(bumpers[i], get_time_step());

}

for (i = 0; i < CLIFF_SENSORS_NUMBER; i++) {
cliff_sensors[i] = wb_robot_get_device(cliff_sensors_name[i]);
wb_distance_sensor_enable(cliff_sensors[i], get_time_step());

}

left_motor = wb_robot_get_device("left wheel motor");
right_motor = wb_robot_get_device("right wheel motor");
servo = wb_robot_get_device("servo motor 1");
lidar = wb_robot_get_device("lidar sensor 1");
wb_motor_set_position(left_motor, INFINITY);
wb_motor_set_position(right_motor, INFINITY);
wb_motor_set_velocity(left_motor, 0.0);
wb_motor_set_velocity(right_motor, 0.0);
wb_motor_set_position(servo, 0.0);

left_position_sensor = wb_robot_get_device("left wheel sensor");
right_position_sensor = wb_robot_get_device("right wheel sensor");
wb_position_sensor_enable(left_position_sensor, get_time_step());
wb_position_sensor_enable(right_position_sensor, get_time_step());
wb_distance_sensor_enable(lidar, get_time_step());

}

static void fflush_ir_receiver() {
while (wb_receiver_get_queue_length(receiver) > 0)
wb_receiver_next_packet(receiver);

}

static void stop() {
wb_motor_set_velocity(left_motor, -NULL_SPEED);
wb_motor_set_velocity(right_motor, -NULL_SPEED);

}

static void passive_wait(double sec) {
double start_time = wb_robot_get_time();
do {
step();

} while (start_time + sec > wb_robot_get_time());
}

static void turnLeftM() {
wb_motor_set_velocity(left_motor, -6);
wb_motor_set_velocity(right_motor, 6);

}
static void turnRightM() {
wb_motor_set_velocity(left_motor, 8);
wb_motor_set_velocity(right_motor, -8);

}

static void go_forward_proportional(double distance){
double speedScale, speed;
if(distance > 0.6){
speedScale = (distance - TARGET_DISTANCE) / TARGET_DISTANCE;
speed = ST_CENTER_SPEED * speedScale * (ST_FACTOR_1 + ST_FACTOR_2 * speedScale);

}
else{
speedScale = (distance - TARGET_DISTANCE) / TARGET_DISTANCE;
speed = ST_CENTER_SPEED * speedScale * (ST_FACTOR_1 - ST_FACTOR_2 * speedScale);

}

if(speed > MAX_SPEED) speed = MAX_SPEED;

if(speed < MIN_SPEED) speed = MIN_SPEED;
wb_motor_set_velocity(left_motor, speed);
wb_motor_set_velocity(right_motor, speed);

}

static void process_movement(double distance, double angle){
if(distance < 1){
if(angle < MAX_SAFE_ANGLE){
turnLeftM(); //turn left if too far right

}
else if(angle > MIN_SAFE_ANGLE){
turnRightM(); //turn right if too far left

}
else if(distance > TARGET_DISTANCE + 0.02 || distance < TARGET_DISTANCE - 0.02){
go_forward_proportional(distance); //go forward/backward proportional to distance from leader

}
else if(distance <= TARGET_DISTANCE + 0.02 || distance >= TARGET_DISTANCE - 0.02){
stop(); //stop if within margin of safety

}
}

}

double deg_2_rad(double deg){
return deg * 3.14159 / 180;

}

static void turn_servo(double angle) {
angle = deg_2_rad(angle);
if(angle > 1.5708){
angle = 1.5708;

}
else if(angle < -1.5708){
angle = -1.5708;

}
wb_motor_set_position(servo, angle);

}

static double read_lidar() {
return (wb_distance_sensor_get_value(lidar) * 10 / 1000);

}

/* main */
int main(int argc, char **argv) {
wb_robot_init();

printf("Follower Controller 2 started...\n");

init_devices();
srand(time(NULL));

wb_led_set(leds[LED_ON], true);
passive_wait(0.5);

double angle = -50;
int turnDir = 1;
double deltaAngle = 1;
double minDist = 1000;
double temp = 0;
int isTurn = 1;
double maxDist = 0;
int counter = 0;
int foundLeaderFlag = 0;
turn_servo(angle);
while(true){
isTurn = 1;
temp = 0;
while(isTurn){

if(turnDir == 0){//determines server movement direction
temp = read_lidar();
if(temp < minDist) minDist = temp;
if(temp < 1 && temp > maxDist) maxDist = temp;
process_movement(temp, angle); //decide movement from sensor data
angle -= deltaAngle;//update current angle
turn_servo(angle);//turn the servo

if(temp < 1 && !foundLeaderFlag) foundLeaderFlag = 1; //indicates leading edge of leader has been
found

else if(temp > 1 && foundLeaderFlag){ //skips to next sweep if trailing edge of leader has been
found

turnDir = 1;
isTurn = 0;
foundLeaderFlag = 0;

}
}
else{
temp = read_lidar();
if(temp < minDist) minDist = temp;
if(temp < 1 && temp > maxDist) maxDist = temp;
process_movement(temp, angle); //decide movement from sensor data
angle += deltaAngle;//update current angle
turn_servo(angle);//turn servo

if(temp < 1 && !foundLeaderFlag) foundLeaderFlag = 1; //indicates leading edge of leader has been
found

else if(temp > 1 && foundLeaderFlag){ //skips to next sweep if trailing edge of leader has been
found

turnDir = 0;
isTurn = 0;
foundLeaderFlag = 0;

}
}
if(angle >= CENTER_ANGLE + ANGLE_RANGE) { //maximum angle for scan sweep
turnDir = 0;
isTurn = 0;
foundLeaderFlag = 0;

}
if(angle <= CENTER_ANGLE - ANGLE_RANGE) { //minimum angle for scan sweep
turnDir = 1;
isTurn = 0;
foundLeaderFlag = 0;

}
counter++;
if(counter > 999){ //printout for error margin measurement
counter = 0;
printf("Max dist Right Bot: %f\nMin dist Right Bot: %f\n",maxDist,minDist);
maxDist = 0;
minDist = 1000;

}
fflush_ir_receiver();
step();

}
}

return EXIT_SUCCESS;
}

Music Parser Code
include <stdio.h>
include <string.h>

char decipherNote(char note[256]);
int decipherDuration(char duration[256]);

int main()
{
FILE *file;
FILE *movementFile;
char * line = NULL;
ssize_t read;
char songTitle[30];

printf("Enter in song name: \n");
scanf("%s", songTitle);
int i;

for(i = 0; i < 30; i++){
if(songTitle[i] == NULL){

songTitle[i] = '.';
songTitle[i + 1] = 't';
songTitle[i + 2] = 'x';
songTitle[i + 3] = 't';
songTitle[i + 4] = '\0';
break;

}
}

file = fopen(songTitle, "r");

if(file == NULL){
printf("%s does not exist!\n", songTitle);

}
else{

printf("Song found! Will now parse notes from song!\n");
movementFile = fopen("movements.txt", "w+");
char note[256] = {0};
char duration[256] = {0};

while (fgets(note, 256, file))
{

// if(note[0] == 'A' || note[0] == 'B' || note[0] == 'C'){
// fprintf(movementFile, "\nf");

// }
// else if(note[0] == 'D' || note[0] == 'E'){

// fprintf(movementFile, "\nr");
// }

// else if(note[0] == 'F' || note[0] == 'G'){
// fprintf(movementFile, "\nl");

// }
char movement = decipherNote(note);
fgets(duration, 256, file);
int length = decipherDuration(duration);
fprintf(movementFile, "\n%c", movement);
for(i = 1; i < length; i++){

fprintf(movementFile, "\n.");
}

}
fclose(file);
fclose(movementFile);

}
return 0;
}
char decipherNote(char note[256])
{

if(note[0] == 'A' || note[0] == 'a'){
return 'b';

}
else if(note[0] == 'B' || note[0] == 'b')
{

return 'r';
}
else if(note[0] == 'C' || note[0] == 'c')
{

return 'l';
}
else if(note[0] == 'D' || note[0] == 'd'){

return 'R';
}

else if(note[0] == 'E' || note[0] == 'e'){
return 'L';

}
else if(note[0] == 'F' || note[0] == 'f')
{

return 'f';
}
else
{

return 's';
}

}
int decipherDuration(char duration[256]){

int length;
sscanf(duration, "%d", &length);

return length;
}

